1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Основные датчики смартфона – какие бывают и зачем нужны?

Содержание

Какие датчики можно найти в смартфонах

Несмотря на скромные размеры, современные смартфоны — очень сложные устройства с мощными многоядерными процессорами, камерами с автофокусом и оптической стабилизацией, экранами большого разрешения с высокими значениями ppi. Кроме того, любой смартфон оснащён различными датчиками, которые делают использование устройства более удобным, либо, особенно в топовых гаджетах, расширяют их возможности. В нашем сегодняшнем материале речь пойдёт именно о датчиках, о том, какие из них можно найти в современных гаджетах, а также как и для чего их используют.

Первый датчик, который стали широко применять в смартфонах — акселерометр, который раньше также часто называли G-сенсором. Как можно понять из его названия, этот датчик служит для измерения ускорения устройства по трём осям. Очевидно, что ускорение есть только тогда, когда устройство перемещается или поворачивается в пространстве, поэтому положение неподвижного смартфона акселерометр определить не может. А это значит, что его точность, к примеру, в играх, будет сравнительно низкой.

Чтобы нивелировать этот недостаток акселерометра, совместно с ним в подавляющем большинстве современных устройств, в том числе самых бюджетных, применяется гироскоп. В отличие от акселерометра, гироскоп может определять положение в пространстве (угол наклона по трём осям) даже неподвижного девайса. Погрешность откалиброванного гироскопа в современных смартфонах, как правило, не превышает 1-2 градусов. Гироскоп и акселерометр широко используются во многих мобильных играх для управления, а также в других приложениях — с самыми разными задачами.

Следующий сенсор, который также можно встретить практически в каждом смартфоне — магнитометр. Этот датчик реагирует на магнитное поле Земли и позволяет таким образом определять стороны света. Это, в свою очередь, наряду с данными о сотовых вышках и точках доступа Wi-Fi в зоне видимости, используется при навигации в отсутствии сигнала GPS. Магнитометр — чувствительный сенсор, а потому смартфоном с ним можно, например, искать проводку в стене, если она замурована неглубоко — достаточно скачать приложение, которое будет считывать показания датчика.

Практически каждый современный смартфон также не обходится без датчика приближения. Сенсор представляет собой инфракрасный излучатель с приёмником, спрятанный под фронтальным стеклом устройства. Он может определять наличие предмета перед собой на расстоянии около пяти сантиметров. Благодаря этому датчику достаточно поднести смартфон к уху во время звонка — и дисплей отключится автоматически (равно как и включится, если убрать устройство); нет необходимости пользоваться для этого кнопкой включения. Стоит упомянуть, что в некоторых топовых смартфонах Samsung используется продвинутый датчик приближения, который выполняет функции датчика жестов, реагирующего на различные движения руки над ним.

Многие смартфоны, за исключением бюджетных моделей, оснащают датчиками освещённости. Главное назначение этого сенсора — определение уровня внешней освещённости и регулировка яркости подсветки дисплея в соответствии с ним.

На этом список распространённых сенсоров можно считать законченным. Как видим, большинство смартфонов имеют минимум пять полезных датчиков, но в более продвинутых гаджетах можно встретить и множество других сенсоров. Один из них — барометр. Несмотря на то, что он впервые появился в смартфоне Samsung Galaxy Note ещё несколько лет назад, до сих пор его можно встретить лишь в некоторых устройствах среднего и топового сегментов. Как и магнитометр, барометр помогает устройству быстрее сориентироваться на местности и поймать сигнал GPS-спутников. Конечно же, скачав одно из многих бесплатных приложений, можно использовать барометр и по его прямому назначению — узнавать атмосферное давление в паскалях или миллиметрах ртутного столба. Также возможно использование барометра в качестве альтиметра — прибора, измеряющего высоту над уровнем моря. Правда, на точность его показаний в этом случае заметно влияют колебания атмосферного давления, но это регулируется посредством ввода актуальных метеоданных и контрольной высотной точки для конкретной местности.

В смартфоне Samsung Galaxy S4 впервые появился термометр. Использование этого датчика более чем очевидно: с помощью предустановленного приложения S Health (впрочем, можно скачать и одну из сторонних программ из Google Play) пользователь может узнавать температуру окружающей среды. То же самое можно сказать и про датчик влажности — гигрометр, который также появился впервые в Samsung Galaxy S4 и может быть использован вместе с приложением S Health.

Для работы обложек типа Smart Cover, при открытии которых экран устройства автоматически включается, используется датчик Холла. Как и магнитометр, датчик Холла реагирует на магнитное поле, но, в отличие от первого, имеет более простой принцип действия: он не определяет напряжённость магнитного поля по нескольким осям, а просто реагирует на его усиление, вызванное приближением постоянного магнита, скрытого в обложке.

Современные гаджеты уже давно научились выполнять функции шагомера, но обычно для этого используется акселерометр. Одним же из немногих устройств, имеющих шагомер в виде отдельного датчика, стал смартфон LG Nexus 5. Пока такой сенсор в диковинку, но наверняка в скором времени станет использоваться и в других устройствах.

Ещё один редкий сенсор — пульсометр. На данный момент отдельный датчик для измерения частоты сердцебиения можно встретить только в смартфоне Samsung Galaxy S5 и Samsung Galaxy S5 Active (не считая умных часов этой же компании под управлением Android и Tizen).

Немного более распространённый датчик — сканер отпечатков пальцев, позволяющий быстро разблокировать устройство без необходимости ввода пароля. На сегодняшний день этот сенсор используется в Apple iPhone 5S, Samsung Galaxy S5, HTC One Max и ещё нескольких малораспространённых моделях смартфонов. Тем не менее, эталоном его реализации пока что по праву считается именно первый девайс — iPhone 5S.

На этом, пожалуй, длинный список датчиков можно завершить, но напоследок мы всё же оставили совсем уж диковинный для смартфона сенсор — дозиметр. Доподлинно известно, что им оснащается выпущенный в Японии Pantone 5 107SH — вероятно, после печально известной аварии на АЭС в Стране Восходящего Солнца стали тщательнее следить за радиационной обстановкой вокруг.

В качестве небольшого заключения повторим: практически любой мало-мальски современный гаджет оснащён минимум пятью разными датчиками. Абсолютным же рекордсменом по их количеству можно назвать Samsung Galaxy S5, который, по нашим подсчётам, имеет аж 12 датчиков. А сколько сенсоров вы насчитали в своём смартфоне?

Датчики современных смартфонов

Владимир Нимин

Продолжаем разбираться в устройстве смартфона. В прошлый раз смотрели экраны, а сегодня поговорим про датчики.

Акселерометр, также называют G-сенсор. Официальное определение гласит, что это устройство, измеряющее проекцию кажущегося ускорения. А если простым языком, то акселерометр помогает смартфону определить положение в пространстве, а также расстояние перемещения. Основные функции акселерометра:

  • Автоповорот ориентации экрана;
  • Также акселерометр можно настроить так, чтоб он реагировал на жесты и действия. Например, потрясти смартфон или перевернуть экраном вниз, чтоб заглушить вызов;
  • Ещё акселерометр помогает считать шаги и помогает ориентироваться на картах (Google Maps и прочих)

Акселерометр – это громоздкое устройство, внутри которого находится инертная масса, реагирующая на все перемещения. Такой вариант для смартфона не подходил, поэтому придумали чип, имеющий кристаллическую структуру, пьезоэлектрический элемент и сенсор ёмкостного сопротивления. Когда смартфон перемещается/вращается, то пьезоэлектрический элемент выдаёт разряды, а сенсор их интерпретирует, таким образом определяя положение и скорость.

Акселерометр – базовый датчик, который есть в любом, даже самом дешевом, смартфоне. Хотя это на удивление технически сложный продукт. В смартфонах акселерометр понимает движения по 3 осям. Третья нужна для 3D позиционирования. К слову, акселерометр есть и во всех современных автомобилях, но там он обычно двухосевой (ибо автомобиль не крутится в воздухе).

Не все акселерометры одинаковые. Их делают из разных материалов. Соответственно, некоторые более чувствительные, некоторые менее.

Гироскоп – это один самых классных датчиков, о полезности которого для смартфонов долгое время никто не подозревал, пока на сцену не вышел Стив Джобс и не объяснил, как оно должно быть. Посмотрите презентацию этой шикарной функции, и как зал взорвался от восторга.

Не следует путать гироскоп и акселерометр. Эти датчики частично дублируют и дополняют друг друга. Гироскоп также служит для отслеживания положения устройства в пространстве, но он делает это путем определения собственного угла наклона относительно земной поверхности. Это очень важно, так как это означает, что в условиях нулевой гравитации, вы не сможете поиграть в Asphalt 9, используя в качестве управления наклоны устройства. Будьте внимательны!

Гироскоп (в отличие от акселерометра) не может измерять проделанное расстояние, зато гораздо точнее определяет положение в пространстве. Для понимания посмотрите, пожалуйста, видео со Стивом Джобсом выше. Начиная с времени 1:10 Джобс показывает, как определяет положение объекта в пространстве акселерометр и как гироскоп.

Обычно в современных смартфонах оба датчика работают в тандеме. Гироскоп важен для игр, дополненной реальности, а также ряда других приложений. Нередко в дешевых смартфонах производитель предпочитает экономить на гироскопе.

Датчик приближения (proximity sensor). Как видно из названия, это датчик, который помогает определить наличие перед ним объекта. Самый простой пример – это отключение экрана, когда смартфон подносят к уху. Также датчик приближения исключает фантомные включения экрана, когда смартфон находится в сумке или кармане. Такой датчик может сам или в комбинации с фронтальной камерой отслеживать движения рукой над экраном для выполнения каких-либо функций. Например, пролистывание странички в браузере и тому подобное. Существует множество технологий датчика приближения. Он может работать по типу радара, сонара, эффекта Доплера, есть инфракрасный датчик приближения, а иногда ставят и фотоэлемент.

Базовый датчик приближения, отключающий экран при поднесении к уху, есть, кажется, уже во всех смартфонах. Но продвинутость датчика можно оценить по наличию дополнительных функций.

Датчик освещения – здесь всё просто и понятно. Такой датчик помогает автоматически выставить яркость экрана. Датчик освещения уже считается базовым датчиком, но в дешевых смартфонах на нем могут сэкономить. И тогда придется каждый раз выставлять яркость вручную.

Читать еще:  iOS 11 Launcher — iPhone X Style

Современный датчик освещения обычно работает в комбинации с ИИ смартфона. Например, если датчик выставил определенную яркость, а вы его вручную поправили, то смартфон возьмёт на заметку и в следующий раз самостоятельно сделает экран поярче. Соответственно, всегда давайте датчику освещения освоится и подстроиться под ваши привычки прежде, чем осуждать его работу.

Датчик Холла – один из самых таинственных датчиков в смартфоне, ибо мало кто знает, зачем он нужен. Датчик, основанный на, так называемом, эффекте Холла, фиксирует магнитное поле и измеряет его напряженность. Говоря языком физики: электроны в проводнике всегда перпендекулярны (угол 90 градусов) направлению магнитного поля. Плотность электронов на разных сторонах проводника будет отличаться, возникает разность потенциалов, которую и фиксирует датчик Холла.

Но в смартфонах используется упрощенный датчик Холла, фиксирующий только наличие магнитного поля.

Обычно датчик Холла нужен для дополнительных аксессуаров. Например, именно он включает экран iPad, когда пользователь снимает магнитный чехол. Кстати, в этой функции датчик приближения вполне может подменить датчик Холла.

Также датчик Холла работает в паре с компасом, делая работу последнего более точной.

Компас (магнитомер) – это очень важный датчик, даже если вы не занимаетесь спортивным ориентированием. Именно компас отвечает за то, что на Google Maps пользователь видит не просто точку, а стрелочку, указывающую в какую-сторону вы смотрите.

Когда компас откалиброван, то отображение направления узкое. Чтобы откалибровать компас, откройте карты Google и крутите смартфон «восьмеркой»:

Барометр – обычно наличием подобного датчика могут похвастаться только флагманы. Барометр ассистирует GPS и помогает определить высоту. Наличие такого датчика полезно, так как на Google Maps уже появляются схемы зданий, и барометр определит на каком этаже вы находитесь. Также барометр используется в приложениях, определяющих физическую активность. Суть такая же: определить, сколько этажей вы прошли.

Датчик влажности – когда-то такой датчик был в Samsung Galaxy Note 4, а потом Samsung от него отказались. Роль очевидная. Датчик определяет уровень влажности.

Датчик сердцебиения/датчик кислорода в крови – ещё один фирменный датчик от Samsung, но он есть и во многих фитнес-браслетах. Работает совместно с LED-вспышкой. Прикладываете палец, LED светит вам свозь палец, а датчик измеряет, как отражаются световые волны. Волны отражаются по-разному в зависимости от пульса: кровеносные сосуды, то сужаются, то расширяются. По этому же принципу работает и функция определения кислорода в крови.

GPS – глобальная система позиционирования. По сути, это даже не датчик, а наличие у смартфона возможности коммуницировать со спутниками благодаря или отдельному, или мульти-чипу, поддерживающему сразу несколько систем. Сейчас у каждой развитой страны, есть своя система спутников. ГЛОНАСС в России, Galileo в Европе, BDS (или BeiDou) в Китае, QZSS (или Quasi-Zenith Satellite System) в Японии. Можно скачать программу GPS Test, которая покажет, какие спутники видит ваш смартфон. Например, на скриншоте ниже отображаются флаги GPS, ГЛОНАСС и Galileo.

GPS прекрасная технология, но медленная (пока там все спутники найдешь и опросишь) и потребляющая много энергии и хорошо работающая на открытой местности, поэтому была придумана ещё A-GPS (Assisted GPS). Принцип основан на том, что пока GPS ищет спутники, смартфон успевает опросить сотовые вышки, Wi-Fi сети, Bluetooth устройства на предмет местонахождения. Таким образом существенно увеличивается время «холодного» старта, а также снижается расход энергии.

Двухдиапазонный GPS. Поддержка этой опции появилась в устройствах начbfz с Android 7 и старше. iPhone так не умеет.

Обычно спутники посылают два сигнала: грубый и точный. Если говорить про GPS, то это каналы L1 и L5, а у Галилео это E1 и Е5. L1 – это грубый канал. В городе любой сигнал достигает до спутника не только напрямую, но и отражаясь от сторонних объектов (например, зданий), то есть к спутнику прилетает сразу несколько сигналов. Соответственно, и возвращается он также не один, и образуется примерная область нахождения, где все вернувшиеся сигналы пересекаются. Ещё есть точный канал L5. Этот канал гораздо меньше подвержен искажением, так как работает по принципу: Первый достигший спутника сигнал и есть верный (ведь он идет по самому короткому пути, а не через отражения), а остальные можно игнорировать.

Раньше L5 принадлежал только военным и спец объектам, но теперь спутников в небе стало много, и L5-спутников хватит на всех, поэтому было решено поделиться.

Вместо заключения

Счётчик Гейгера – самый неожиданный датчик, правда? Это японская тема. И насколько есть информация в интернете, такой датчик был только в телефоне Sharp Pantone 5, который вышел после аварии на атомной станции Фукусима-1.

Современный смартфон должен иметь на борту: акселерометр, гироскоп, датчик приближения и освещения. Также обязательно наличие компаса. Если без гироскопа можно обойтись, то точка на карте без направления раздражает. A-GPS уже есть во всех смартфонах. Отлично если GPS будет работать в двух диапазонах. Шикарно, если будет барометр.

7 датчиков, которые делают ваш смартфон таким умным

Современные смартфоны объединяют в себе сразу с десяток гаджетов. Быть такими многофункциональными устройствами и получать информацию из окружающего мира им позволяют различные сенсоры.

Акселерометр

Акселерометр измеряет ускорение и позволяет смартфону определять характеристики движения и положения в пространстве. Именно этот датчик работает, когда вертикальная ориентация меняется на горизонтальную при повороте устройства. Он же отвечает за подсчёт шагов и измерение скорости движения во всевозможных приложениях-картах. Акселерометр даёт информацию о том, в какую сторону повёрнут смартфон, что становится важной функцией в различных приложениях с дополненной реальностью.

Этот сенсор сам состоит из маленьких датчиков: микроскопических кристаллических структур, под влиянием сил ускорения переходящих в напряжённое состояние. Напряжение передаётся акселерометру, который интерпретирует его в данные о скорости и направлении движения.

Гироскоп

Этот датчик помогает акселерометру ориентироваться в пространстве. Он, например, позволяет делать на смартфон панорамные фото. В играх с гонками, где управление происходит с помощью перемещения устройства, работает как раз гироскоп. Он чувствителен к поворотам устройства относительно своей оси.

В смартфонах используются микроэлектромеханические системы, а первые подобные приборы, сохраняющие ось при поворотах, появились ещё в начале XIX века.

Магнитометр

Последний в тройке сенсоров для ориентации в пространстве — магнитометр. Он измеряет магнитные поля и, соответственно, может определить, где находится север. Функция компаса в различных приложениях с картами и отдельные программы-компасы работают с помощью магнитометра.

Подобные датчики есть в металлодетекторах, так что можно найти специальные приложения, превращающие смартфон в такой прибор.

Магнитометр действует в тандеме с акселерометром и GPS для определения географического положения и навигации.

Где бы мы были без технологии GPS (Global Positioning System)? Смартфон соединяется с несколькими спутниками и высчитывает своё положение на основании углов пересечения. Бывает, что спутники недоступны: например, при большой облачности или внутри помещений.

GPS не использует данные мобильной сети, поэтому геолокация работает и вне зоны покрытия сотовой связи: даже если саму карту загрузить не получится, точка геолокации всё равно будет.

При этом функция GPS тратит много заряда аккумулятора, поэтому лучше её отключать вне надобности.

Ещё один способ геолокации, хотя и не очень точный, — это определение расстояния от вышек сотовой связи. Смартфон добавляет к данным GPS другую информацию, например силу мобильного сигнала, для уточнения местоположения.

Барометр

Многие смартфоны, в том числе iPhone, имеют этот сенсор, измеряющий атмосферное давление. Он нужен для регистрации изменения погоды и определения высоты над уровнем моря.

Бесконтактный выключатель

Этот сенсор обычно находится около динамика в верхней части смартфона и состоит из инфракрасного диода и датчика света. Он использует невидимый человеку луч, чтобы определить, находится ли устройство возле уха. Так смартфон «понимает», что во время разговора по телефону нужно отключить дисплей.

Датчик освещённости

Как можно догадаться по названию, этот сенсор измеряет уровень освещённости окружающей среды, что позволяет автоматически настраивать комфортную яркость дисплея.

Датчики с каждым новым поколением смартфонов становятся всё более эффективными, маленькими и менее энергозатратными. Поэтому не стоит думать, что, например, функция GPS в устройстве, которому уже несколько лет, будет работать так же хорошо, как в новом. И даже если в информации о новых смартфонах не указывают характеристики всех этих датчиков, будьте уверены, что именно они позволяют вам пользоваться многими впечатляющими функциями современных гаджетов.

Сенсорные датчики в Android: какие они бывают и как с ними работать

Содержание статьи

Датчики всякие нужны!

Для работы с аппаратными датчиками, доступными в устройствах под управлением Android, применяется класс SensorManager, ссылку на который можно получить с помощью стандартного метода getSystemService:

Чтобы начать работать с датчиком, нужно определить его тип. Удобнее всего это сделать с помощью класса Sensor, так как в нем уже определены все типы сенсоров в виде констант. Рассмотрим их подробнее:

  • Sensor.TYPE_ACCELEROMETER — трехосевой акселерометр, возвращающий ускорение по трем осям (в метрах в секунду в квадрате). Связанная система координат представлена на рис. 1.
  • Sensor.TYPE_LIGHT — датчик освещенности, возвращающий значение в люксах, обычно используется для динамического изменения яркости экрана. Также для удобства степень освещенности можно получить в виде характеристик — «темно», «облачно», «солнечно» (к этому мы еще вернемся).
  • Sensor.TYPE_AMBIENT_TEMPERATURE — термометр, возвращает температуру окружающей среды в градусах Цельсия.
  • Sensor.TYPE_PROXIMITY — датчик приближенности, который сигнализирует о расстоянии между устройством и пользователем (в сантиметрах). Когда в момент разговора гаснет экран — срабатывает именно этот датчик. На некоторых девайсах возвращается только два значения: «далеко» и «близко».
  • Sensor.TYPE_GYROSCOPE — трехосевой гироскоп, возвращающий скорость вращения устройства по трем осям (радиан в секунду).
  • Sensor.TYPE_MAGNETIC_FIELD — магнитометр, определяющий показания магнитного поля в микротеслах (мкТл) по трем осям (имеется в смартфонах с аппаратным компасом).
  • Sensor.TYPE_PRESSURE — датчик атмосферного давления (по-простому — барометр), который возвращает текущее атмосферное давление в миллибарах (мбар). Если немного вспомнить физику, то, используя значение этого датчика, можно легко вычислить высоту (а ежели вспоминать ну никак не хочется, можно воспользоваться готовым методом getAltitude из объекта SensorManager).
  • Sensor.TYPE_RELATIVE_HUMIDITY — датчик относительной влажности в процентах. Кстати, совместное применение датчиков относительной влажности и давления позволяет предсказывать погоду — конечно, если выйти на улицу. 😉
  • Sensor.TYPE_STEP_COUNTER (с API 19) — счетчик шагов с момента включения устройства (обнуляется только после перезагрузки).
  • Sensor.TYPE_MOTION_DETECT (с API 24) — детектор движения смартфона. Если устройство находится в движении от пяти до десяти секунд, возвращает единицу (по всей видимости, задел для аппаратной функции «антивор»).
  • Sensor.TYPE_HEART_BEAT (с API 24) — детектор биения сердца.
  • Sensor.TYPE_HEART_RATE (с API 20) — датчик, возвращающий пульс (ударов в минуту). Этот датчик примечателен тем, что требует явного разрешения android.permission.BODY_SENSORS в манифесте.

Рис. 1. Система координат датчиков

Перечисленные датчики являются аппаратными и работают независимо друг от друга, часто без всякой фильтрации или нормализации значений. «Для облегчения жизни разработчиков»™ Google ввела несколько так называемых виртуальных сенсоров, которые предоставляют более упрощенные и точные результаты.

Читать еще:  Код 914 – МТС , Интертелеком

Например, датчик Sensor.TYPE_GRAVITY пропускает показания акселерометра через низкочастотный фильтр и возвращает текущие направление и величину силы тяжести по трем осям, а Sensor.TYPE_LINEAR_ACCELERATION использует уже высокочастотный фильтр и получает показатели ускорения по трем осям (без учета силы тяжести).

Исчерпывающее описание всех датчиков доступно по ссылке.

При разработке приложения, эксплуатирующего показания сенсоров, вовсе не обязательно бегать по улице или прыгать в воду с высокой скалы, так как эмулятор, входящий в поставку Android SDK, умеет передавать приложению любые отладочные значения (рис. 2–3).

Рис. 2. Крутим и кидаем

Рис. 3. Нагреваем и сдавливаем

Ищем датчики

Чтобы узнать, какие сенсоры есть в смартфоне, следует использовать метод getSensorList объекта SensorManager:

Полученный список будет включать все поддерживаемые датчики: как аппаратные, так и виртуальные (рис. 4). Более того, некоторые из них будут иметь различные независимые реализации, отличающиеся количеством потребляемой энергии, задержкой, рабочим диапазоном и точностью.

Для получения списка всех доступных датчиков конкретного типа необходимо указать соответствующую константу. Например, код

вернет все доступные барометрические датчики. Причем аппаратные реализации окажутся в начале списка, а виртуальные — в конце (правило действует для всех типов датчиков).

Рис. 4. Датчики смартфона среднего ценового диапазона

Чтобы получить реализацию датчика по умолчанию (такие датчики хорошо подходят для стандартных задач и сбалансированы в плане энергопотребления), используется метод getDefaultSensor:

Если для заданного типа датчика существует аппаратная реализация, по умолчанию будет возвращена именно она. Когда нужного варианта нет, в дело вступает виртуальная версия, ну а если, увы, ничего подходящего в девайсе не окажется, getDefaultSensor вернет null .

О том, как самолично выбирать реализацию датчиков по критериям, написано во врезке, мы же плавно двигаемся дальше.

Снимаем показания

Чтобы получать события, генерируемые датчиком, необходимо зарегистрировать реализацию интерфейса SensorEventListener с помощью того же SensorManager. Звучит сложновато, но на практике реализуется одной строчкой:

Здесь мы полученный ранее барометр по умолчанию регистрируем с помощью метода registerListener, передавая в качестве второго параметра сенсор, а в качестве третьего — частоту обновления данных.

В классе SensorManager определены четыре статические константы, определяющие частоту обновления:

  • SensorManager.SENSOR_DELAY_FASTEST — максимальная частота обновления данных;
  • SensorManager.SENSOR_DELAY_GAME — частота, обычно используемая в играх, поддерживающих гироскоп;
  • SensorManager.SENSOR_DELAY_NORMAL — частота обновления по умолчанию;
  • SensorManager.SENSOR_DELAY_UI — частота, подходящая для обновления пользовательского интерфейса.

Нужно сказать, что, указывая частоту обновления, не стоит ожидать, что она будет строго соблюдаться. Как показывает практика, данные от сенсора могут приходить как быстрее, так и медленнее.

Оставшийся нерассмотренным первый параметр представляет собой реализацию интерфейса SensorEventListener, где мы наконец-то получим конкретные цифры:

В метод onSensorChanged передается объект SensorEvent, описывающий все события, связанные с датчиком: event.sensor — ссылка на датчик, event.accuracy — точность значения датчика (см. ниже), event.timestamp — время возникновения события в наносекундах и, самое главное, массив значений event.values. Для датчика давления передается только один элемент, тогда как, например, для акселерометра предусмотрено сразу три элемента для каждой из осей. В следующих разделах мы рассмотрим примеры работы с различными датчиками.

Метод onAccuracyChanged позволяет отслеживать изменение точности передаваемых значений, определяемой одной из констант: SensorManager.SENSOR_STATUS_ACCURACY_LOW — низкая точность, SensorManager.SENSOR_STATUS_ACCURACY_MEDIUM — средняя точность, возможна калибровка, SensorManager.SENSOR_STATUS_ACCURACY_HIGH — высокая точность, SensorManager.SENSOR_STATUS_UNRELIABLE — данные недостоверны, нужна калибровка.

После того как отпадает необходимость работы с датчиком, следует отменить регистрацию:

Меряем давление и высоту

Весь код для работы с датчиком давления мы уже написали в предыдущем разделе, получив в переменной pressure вполне себе значение атмосферного давления в миллибарах.

Продолжение доступно только участникам

Вариант 1. Присоединись к сообществу «Xakep.ru», чтобы читать все материалы на сайте

Членство в сообществе в течение указанного срока откроет тебе доступ ко ВСЕМ материалам «Хакера», увеличит личную накопительную скидку и позволит накапливать профессиональный рейтинг Xakep Score! Подробнее

Какие бывают датчики в смартфонах

Современный смартфон – это сложное высокотехнологичное вычислительное устройство, которое мощнее тысяч бортовых компьютеров, полвека назад запускавших «Аполлоны» на Луну. Датчиков на борту флагманских мобильников тоже установлено едва не больше, чем на борту этого самого «Аполлона». Каждый из них незаметно, но добросовестно выполняет свою работу. Чем же занимаются все эти датчики смартфона, и как они устроены – подробнее читайте далее.

Датчик освещения

Сенсор освещения в смартфоне расположен на передней панели, обычно возле разговорного динамика (бывают исключения). Конструкционно он представляет полупроводниковый сенсор, чувствительный к потоку фотонов. В зависимости от его интенсивности, сенсор осуществляет управление подсветкой дисплея, с целью более эффективно расходовать заряд аккумулятора. Также он может выполнять вспомогательную функцию для других задач, работая с датчиком приближения.

Датчик приближения

Это – оптический или ультразвуковой сенсор, определяющий, нет ли предметов перед экраном. Он посылает очень слабый световой или звуковой импульс, а если тот отразился – регистрирует отраженный сигнал. За счет этого осуществляется автоматическая блокировка экрана в режиме разговора или при перевороте смартфона дисплеем вниз. Традиционно сенсор приближения откалиброван таким образом, что регистрирует лишь 2 состояния: «посторонний предмет ближе N (обычно 5) сантиметров» и «посторонний предмет дальше N см».

Акселерометр

Этот сенсор смартфона расположен на плате и представляет собой миниатюрный электромеханический прибор, регистрирующий малейшие движения. В обязанности этого датчика входит переключение ориентации экрана смартфона при наклоне, управление в играх, регистрация особых жестов управления (вроде потряхивания или постукивания по корпусу), а также замер шагов (путем подсчета ритмических колебаний в процессе ходьбы).

Обычный двухосевой акселерометр в смартфоне

Бывают двухосевые и трехосевые акселерометры. Особенностью акселерометра является то, что в состоянии покоя — одна из осей всегда будет показывать значение в районе 9-10 м/с 2 (в трехосевом трехмерном акселерометре). Это связанно с тем, что сила тяжести Земли составляет в среднем 9,8 м/с 2 .

Гироскоп отвечает за определение движения и ориентации смартфона в пространстве. Он тоже конструкционно представляет MEMS (микроэлектромеханическую схему), расположенную на системной плате. Сферы его применени пересекаются с таковыми у акселерометра. Основные отличия состоят в том, что гироскоп имеет заметно большую точность и измеряет движение не в м/с 2 , а радианах или градусах на секунду. За счет этого его можно использовать для отслеживания поворотов головы в VR-гарнитуре, а также более точно реализовать жестовое управление.

Гироскоп MEMS под микроскопом

Магнитометр и датчик Холла

Магнитометр измеряет величину магнитного поля окружающего мира. Он также проводит измерения в трехмерном пространстве (по трем осям декартовых координат — X, Y и Z). Основная функция магнитометра – более точное определение местоположения в ходе навигации. В этом режиме использования он выполняет функцию цифрового компаса. Благодаря тому, что одна из осей, которая расположена в плоскости с Северным полюсом Земли, регистрирует постоянно повышенный фон. Магнитометр помогает более точно определять, в какую сторону относительно севера движется смартфон.

Часто магнитометр называют датчиком Холла, однако это не совсем тождественные понятия. Подробнее о датчике Холла мы писали в другой статье. Отличия состоят в том, что первый является более универсальным и чувствительным. Магнитометр способен производить замеры магнитного излучения, в то время как только регистрирует его наличие/отсутствие и уменьшение/усиление. В современных смартфонах отдельный датчик Холла обычно не ставят, так как универсальный магнитометр полностью покрывает его функциональность.

Одной из альтернативных функций магнитометра является поиск проводки в стенах. Проводник под напряжением генерирует слабое электромагнитное излучение, а чувствительность сенсора составляет единицы микротесла. Если водить смартфоном по стене, то в месте заложения кабеля магнитный фон будет повышенным.

Датчик гравитации

Измеряет силу притяжения нашей планеты в трехмерном пространстве. В состоянии покоя (когда смартфон лежит на столе), его показания должны совпадать с акселерометром: по одной из осей сила гравитации будет близка к 9,8 м/с 2 . Самостоятельно этот сенсор обычно не используется, но помогает работе других. В режиме навигации он определяет, в какой стороне земная поверхность, чтобы быстрее определить правильное положение смартфона. При использовании в VR за счет сенсора гравитации осуществляется правильное позиционирование картинки.

Датчик линейного ускорения в смартфоне

Принцип его работы практически идентичен акселерометру, единственное отличие кроется в инертности. То есть, показания этого сенсора не зависят ни от каких глобальных внешних факторов (вроде гравитации). Единственное, что он регистрирует – это скорость перемещений смартфона в пространстве относительно его прежнего положения.

Определять положение аппарата в пространстве датчик линейного ускорения не способен (нет привязки к внешним ориентирам), но это и не нужно (с данной задачей отлично справляются сенсор гравитации и акселерометр). Отсутствие привязки к внешним ориентирам позволяет поворачивать объекты на дисплее безотносительно этих ориентиров, например, в играх. Также данный сенсор, в совокупности с другими, повышает общую точность определения движений.

Датчик вращения

Он определяет направление и частоту вращения смартфона относительно одной из осей трехмерного пространства. Как и датчик ускорения, является независимым и не привязан к внешним ориентирам. Часто выполняется в составе одного модуля с сенсором линейного ускорения. Отдельно, как правило, не задействуется, но позволяет корректировать работу других сенсоров для повышения точности. Также помогает при управлении жестами, например, покрутив смартфон в кисти руки активируется камера.

Гироскоп MEMS в разрезе

Температурные датчики

Современный смартфон обильно напичкан цифровыми термометрами. Конструкционно они представляют собой термопару: резистор с двумя выводами, сопротивление между которыми меняется в зависимости от температуры. Так как он относительно примитивен, то может быть выполнен даже внутри полупроводникового чипа.

В каждом смартфоне обязательно имеется датчик температуры батареи. При ее перегреве он отключает зарядку или снижает силу тока на выходе, чтобы предотвратить закипание электролита, которое влечет возгорание или взрыв. Также распространены термометры внутри SoC (в количестве от пары штук – до десятка и более). Они измеряют температуры процессорных ядер, графического ускорителя, различных контроллеров. Иногда встречаются и датчики окружающей температуры, но они распространены слабо. Причина тому – низкая точность, так как тепло от внутренностей аппарата и рук пользователя искажает показания.

Датчик давления (барометр) в смартфоне

Барометр в смартфоне измеряет атмосферное давление (в мм ртутного столба, бар или паскалях). Он позволяет корректнее определять местоположение и высоту над уровнем моря, так как при подъеме давление снижается. Также он может использоваться в качестве альтиметра, замеряя высоту над уровнем моря, но точность оставляет желать лучшего, так как атмосферное давление меняется вместе с погодой. Еще меньше востребована функция корректировки прогноза погоды в метеорологических программах и виджетах.

Гигрометр

Гигрометр измеряет влажность воздуха. Его основное предназначение очевидно, но популярностью данный сенсор не пользуется. В теории с его помощью можно корректировать данные прогноза погоды. Зная показания, можно также управлять микроклиматом в помещении, включив увлажнитель или осушитель воздуха. Единственный из известных смартфонов с гигрометром – уже старенький Samsung Galaxy S4.

Пульсометр или датчик сердечного ритма в смартфонах

Пульсометр способен измерять частоту и ритм сердечных сокращений. В процессе занятий спортом он дает возможность наблюдать за работой сердца и корректировать нагрузки для повышения эффективности тренировок. Недостатком пульсометра является потребность в плотном контакте смартфона с частью тела, в которой кровеносные сосуды находятся близко к поверхности (например, пальцами), чтобы уловить малейшие пульсации. Из-за этого популярности в смартфонах он не приобрел, а вот в смарт-часах и фитнес трекерах встречается повсеместно.

Читать еще:  Лучшие очки виртуальной реальности для смартфонов — Топ 16: плюсы, минусы, характеристики, отзывы, обзор

Датчики в смартфонах: какие бывают?

Использование в современных смартфонах множества датчиков и сенсоров вызвано желанием производителей обойти конкурентов. Пользователям такая «гонка вооружений» только на пользу – ведь благодаря ней они получают доступ к совершенно невероятным технологиям.

Если удалить из смартфона все датчики, он лишится внушительной части своих функций и превратится в довольно примитивный аппарат. Даже такие привычные пользователям действия, как изменение ориентации экрана при переводе гаджета в горизонтальное положение и автоматическое отключение дисплея при разговоре, не выполнялись бы без датчиков.

Стремясь выиграть конкуренцию на рынке, производители современной мобильной техники оборудуют свои аппараты огромным количеством сенсоров – ведь это повышает функциональность. В статье мы расскажем обо всех известных датчиках смартфонов – в том числе о тех, которые устанавливаются в новейшие модели.

Акселерометр и гироскоп

Акселерометр – один из основных датчиков смартфона; его также называют G-сенсором. Функция акселерометра заключается в измерении линейного ускорения смартфона по 3-м осям координат. Данные о перемещениях устройства аккумулируются и обрабатываются специальным контроллером – естественно, происходит это за считанные доли секунды. Размещает крохотный датчик примерно по центру корпуса смартфона. Самостоятельная замена акселерометра при поломке исключена – придётся идти в сервис.

Кто должен поблагодарить разработчиков за акселерометры в смартфонах? Прежде всего, любители гоночных симуляторов, способные управлять виртуальными автомобилями, просто наклоняя аппарат влево-вправо. Именно акселерометр позволяет гаджету менять ориентацию экрана с портретной на ландшафтную, когда пользователь переворачивает устройство.

Впервые акселерометр появился на телефоне Nokia 5500. Этот датчик вызвал бурный восторг у сторонников активного образа жизни, потому как позволял пользоваться шагомером.

У акселерометра есть один существенный недостаток: он может фиксировать положение только тогда, когда происходит ускорение – то есть когда гаджет перемещается в пространстве. Определить положение аппарата, лежащего на столе, акселерометр не способен. Нивелировать этот недостаток призван датчик-«партнёр» под названием гироскоп. Такой датчик измеряет скорость углового вращения и обеспечивает более высокую точность данных по сравнению с акселерометром. У гироскопа, который прошёл процедуру калибровки, погрешность не будет составлять более 2 градусов.

Гироскоп активно используется в мобильных играх – в сочетании с акселерометром. Кроме того, этот датчик делает возможными оптическую стабилизацию камеры, создание панорамных снимков (гироскоп определяет, на сколько градусов был повёрнут смартфон), жестовое управление.

Первым смартфоном с гироскопом стал iPhone 4. Сейчас гироскоп – далеко не экзотика; им (как и акселерометром) оснащается большинство современных девайсов.

Датчики приближения и освещения

Наличие датчика приближения (Proximity Sensor) в смартфоне – объективная необходимость. Если б такой сенсор отсутствовал, пользователю приходилось бы терпеть неудобства всякий раз во время разговора по телефону. Достаточно было бы легко коснуться щекой кнопки сброса – и разговор прекращён, нужно вызывать абонента снова. Функция датчика приближения очевидна: он блокирует экран гаджета, как только пользователь подносит устройство к уху. Этот сенсор позволяет владельцу смартфона не только общаться с комфортом, но и экономить заряд аккумулятора.

Датчик приближения «прячется» под фронтальным стеклом мобильного устройства. Состоит он из 2-х элементов: диода и детектора. Диод отправляет инфракрасный импульс (невидимый глазу человека), а детектор пытается поймать его отражение. Если детектору это удаётся, экран «затемняется». Сенсор способен регистрировать всего лишь 2 состояния: «посторонний предмет ближе 5 см» и «посторонний предмет дальше 5 см».

Потрясающих результатов в экспериментах с датчиком приближения добилась компания Samsung. На основе этого сенсора корейский производитель создал датчик жестов, благодаря которому стало возможным бесконтактное управление смартфоном. Первый датчик жестов появился на Samsung Galaxy S3 – в 2012 году это стало настоящим прорывом.

Датчик освещённости (Light Sensor) не зря рассматривается в паре с датчиком приближения – как правило, эти два сенсора располагаются в непосредственной близости по отношению друг к другу. Датчик света – самый «старый» из всех датчиков, которые используются в мобильной электронике. Также он и самый простой – с конструкционной точки зрения этот сенсор представляет собой полупроводник, чувствительный к потоку фотонов. Функция у датчика освещения не такая ответственная, как у датчика приближения: Light Sensor всего лишь регулирует яркость дисплея в соответствии с окружающими условиями.

В некоторых моделях Samsung (например, Galaxy Note 3 и Galaxy S5) установлены RGB-датчики. Сенсор RGB способен не только менять яркость дисплея, но и корректировать доли красного, зелёного, синего и белого цветов изображения на экране.

Разработчики Samsung Galaxy Note 4 дошли до абсурда: они научили датчик фаблета измерять освещённость в невидимом для человека диапазоне – ультрафиолетовом. Благодаря такой любопытной новации пользователь может, например, выбрать оптимальное время для загара.

Барометр и температурный датчик

Человеку с высокой чувствительностью к резким перепадам атмосферного давления просто необходимо иметь в смартфоне приложение-барометр. В Google Play, например, одна из подобных программ так и называется — «Барометр».

Датчик-барометр способен не только предупреждать пользователя о приближении циклона – антициклона; это даже не основная его функция. Сенсор увеличивает эффективность и точность работы GPS-навигатора гаджета. Спутники GPS показывают, в какой точке земного шара находится искомое место – но не на какой высоте. Этот недостаток их работы и устраняется барометром. Датчик давления может помочь найти, скажем, офис определённой компании в многоэтажном здании бизнес-центра.

Мобильные барометры – не новинка; датчиками давления были способны похвастаться ещё аппараты Sony Ericsson. Однако на современном рынке гаджетов, оснащённых такими сенсорами, немного. Барометры всё чаще устанавливаются на защищённые смартфоны таких производителей, как Conquest, Land Rover, iMan. Также датчики давления присутствуют на Xiaomi Mi5 и Cubot Dinosaur.

Температурные датчики, в отличие от барометров, присутствуют в большей части смартфонов – однако температуру на улице с их помощью не измеришь. Речь идёт о внутренних термометрах, задача которых – следить за тем, чтобы гаджет не перегревался. В одном смартфоне может быть уйма подобных сенсоров: первый контролирует графический ускоритель, второй – ядра процессора и так далее. Если возникает перегрев, внутренний термометр автоматически прекращает зарядку или снижает выходной ампераж.

Внешние термометры на гаджетах тоже встречаются, но они пока «в диковинку». Первым смартфоном со встроенным термометром стал Samsung Galaxy S4. Датчик оказался необходим для улучшения работы предустановленного приложения S Health.

Увы, у внешних термометров мобильных устройств есть существенный недостаток – невысокая точность. Данные искажаются из-за тепла, исходящего от тела пользователя и внутренностей самого аппарата. Решить эту проблему разработчикам пока не удаётся.

Для нужд приложения S Health на Samsung Galaxy S4 был установлен ещё один любопытный датчик – гигрометр. Этот сенсор измеряет уровень влажности, предоставляя пользователю возможность эффективно управлять микроклиматом в помещении.

Какие датчики позволяют следить за здоровьем?

Человеку, стремящемуся вести здоровый образ жизни, не помешает обзавестись гаджетом, который оснащён следующими датчиками.

Педометр (шагомер)

Функция педометра – считать расстояние, преодолённое пользователем, на основании количества совершённых шагов. Эту функцию способен выполнять и акселерометр, однако точность его измерений оставляет желать лучшего. Шагомер как отдельный датчик впервые появился на смартфоне LG Nexus 5.

Пульсометр (датчик сердцебиения)

Встроенный пульсометр – одна из инноваций Samsung Galaxy S5. Разработчики Samsung посчитали, что именно датчика пульса не хватает программе S Health для того, чтоб она могла считаться полноценным личным тренером. Среди пользователей пульсометр Samsung пока популярным не стал, потому как достаточно привередлив. Чтобы обеспечить точные данные, сенсору необходим тесный контакт с той частью тела пользователя, где кровеносные сосуды находятся неглубоко – например, с подушечкой пальца. Совершать пробежку, удерживая палец на датчике – удовольствие небольшое.

Датчик оксигенации крови (датчик SpO2)

Этот сенсор определяет степень насыщения крови кислородом. Он присутствует только на 2 смартфонах фирмы Samsung (Galaxy Note 4 и Note Edge) и «заточен» под приложение S Health. На девайсах датчик SpО2 совмещён со вспышкой для камеры и пульсометром. Пользователю достаточно активировать соответствующее приложение и приложить палец к вспышке на 30-40 секунд – после чего он увидит результат замера в процентах на экране гаджета.

Дозиметр

Таким датчиком оснащён выпущенный в Японии смартфон Sharp Pantone 5. Функция дозиметра – измерение радиации. Для японцев эта функция важна, потому как после аварии на АЭС в Фукусиме в 2011 году они вынуждены более внимательно следить за радиационным фоном. На европейском рынке смартфонов с дозиметрами нет.

Сканеры отпечатков пальцев и сетчатки глаза

Пользователи, которые считают, будто первый дактилоскопический датчик появился на iPhone 5S, сильно заблуждаются. Телефоны, способные сканировать отпечатки пальцы, выпускались и раньше. Ещё в 2004 году продавалась «раскладушка» Pantech GI 100, оснащённая подобной технологией. 7 лет спустя Motorola представила модель Atrix 4g c дактилоскопическим датчиком. В обоих случаях пользователи отнеслись к технологии довольно прохладно.

Когда же в 2013 году Apple встроила сканер отпечатков пальцев в кнопку «Home» Айфона 5S, «яблочной» компании рукоплескали как эксперты, так и рядовые потребители. Apple больше повезло с эпохой: в «нулевых» вопрос о безопасности безналичных платежей не стоял так остро.

Сканер отпечатков пальцев избавляет пользователя от необходимости применять цифровые пароли для защиты данных, хранящихся на гаджете. Пароли легко взломать; обмануть дактилоскопический датчик сложнее в разы (хотя тоже возможно).

Сканер сетчатки глаза обеспечивает даже более высокую степень безопасности, чем дактилоскопический датчик – фактически это следующий уровень биометрической защиты. Сторонники технологии утверждают, что достать отпечаток пальца – задача выполнимая (ведь человек их повсюду оставляет). Получить же копию сетчатки нельзя никак.

Идея оснастить смартфон сканером сетчатки тоже не нова. Ещё в 2015 году азиатские производители (Vivo, Fujitsu) экспериментировали с этим датчиком, в 2016 году тренд поддержала малоизвестная компания из Поднебесной Homtom. Однако обсуждаемой эта технология стала только после того, как к ней обратилась компания Samsung – в Galaxy Note 7 установили сканер радужной оболочки глаза.

Датчик в Note отличен от тех, которые стоят в смартфонах китайских компаний. Идею Samsung вполне можно назвать революционной потому, что на Note 7 есть камера, которая ответственна только за сканирование глаз. «Китайцы» же считывают информацию с сетчатки селфи-камерой.

Метод, который используется гаджетами из Поднебесной, неэффективен. Дело в том, что глаз необходимо сканировать инфракрасным (ИК) лучом, но на фронтальных камерах ИК-спектр, как правило, фильтруется – ведь из-за него портятся селфи. Выходит, что Samsung – пока единственный производитель смартфонов, который не заставляет пользователей делать выбор между качественными «себяшками» и безопасностью персональных данных.

Заключение

Всякий современный смартфон оснащён минимум 5-ю датчиками. В моделях-флагманах количество сенсоров доходит до «чёртовой дюжины», и производители вовсе не собираются на этом останавливаться. Специалисты IBM прогнозируют, что уже в 2017 году гаджеты получат обоняние, благодаря которому смогут предупреждать пользователя, например, о высокой концентрации чадного газа и о присутствии в воздухе вируса гриппа. С нетерпением ждём инноваций – ведь продолжение следует?

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector