Частоты сотовой связи 2G, 3G, 4G
На каких 3G и 4G частотах работают сотовые операторы в России
Частотные диапазоны в России — тема весьма запутанная. Но если немного покопаться в интернете, то можно обнаружить массу интересной информации по этому вопросу.
3G, 4G и LTE — в чём разница
LTE — это стандарт беспроводной высокоскоростной передачи данных, пришедший на замену старому 3G, который активно использовался по всему миру ещё с начала нулевых. Хоть скорость передачи данных по сравнению со стандартом третьего поколения и стала выше в десятки раз, до требований, установленных Международным союзом электросвязи для стандарта 4G, технология LTE недотягивает.
- 3G по стандарту должна обеспечивать скорость передачи данных от 3,5 Мбит/с;
- современная LTE обеспечивает скорость загрузки до 326,4 Мбит/с, а скорость отдачи до 172,8 Мбит/с;
- к 4G были выдвинуты требования — скорость загрузки для устройств с низкой мобильностью (передвигающихся со скоростью до 10 км/ч) от 1 Гб/с, с высокой — от 100 Мб/с.
LTE (Long Term Evolution, буквально «долгосрочная эволюция») является своеобразным промежуточным этапом между третьим и четвёртым поколениями беспроводных сетей.
Что такое частотные диапазоны
Весь спектр частот был разделён на диапазоны (bands) международной организацией 3GPP. Их всего 72, но многие из них недоступны рядовому пользователю и используются для государственных нужд.
Частотные диапазоны (или радиодиапазоны) используются не только для мобильного доступа в интернет, но и для других целей:
Они используют разные диапазоны, чтобы сигналы от устройств не мешали друг другу.
Применительно к мобильному интернету частотные диапазоны могут изменяться в зависимости от оператора связи и стандарта передачи данных (3G или LTE). В России под эти нужды выделено несколько отрезков от 300 до 3 000 МГц. Те же радиодиапазоны используются для мобильной связи формата GSM.
Теоретически все из них могут использоваться для передачи данных по стандарту четвёртого поколения и LTE, однако на практике всё не совсем так. Новая технология не моментально заменяет старую, а потому некоторые частоты законодательно закреплены под 3G-интернет.
Какие диапазоны лучше — высокочастотные или низкочастотные
Чем ниже частота, тем шире её охват и лучше проходимость. Это даёт пользователю возможность подключиться к интернету с качественным соединением в различных удалённых уголках или в окружении высоток (да и в самих высотках) в мегаполисах. Но у такого соединения скорость передачи данных ниже, чем у высокочастотных диапазонов.
Для операторов сотовой связи низкие частоты (до 2 000 МГц) являются более выгодным решением благодаря возможности сэкономить на оборудовании. В крупных городах обычно используют именно их. Для наилучшего покрытия самые технологичные операторы комбинируют высокие и низкие частоты. К ним относятся, например, Megafon, MTS, Beeline.
У высокочастотных диапазонов скорость передачи данных выше, но у таких вышек меньшая зона покрытия и проходимость волн. Они лучше подходят для открытых пространств, например, пригорода.
Частотные диапазоны LTE в России и в мире
Используемые частотные диапазоны могут различаться в разных странах. Из-за этого модели смартфонов, произведённые для использования, например, в США или в Китае, не будут ловить LTE в России.
Например, iPhone SE модели A1662, созданный для Соединённых штатов, воспринимает 20-й и 7-й диапазоны. А они в России пока почти не развиты. Поэтому при покупке смартфона из-за границы нужно внимательно проверять список поддерживаемых радиодиапазонов, иначе можно остаться вообще без LTE.
В России для связи четвёртого поколения сейчас используются пять частотных диапазонов:
- 3 (1800–1880 МГц);
- 7 (2620–2690 МГц);
- 20 (790–820 МГц);
- 31 (450 МГц);
- 38 (2570–2620 МГц).
В США применяются диапазоны 2, 4, 7, 13, 17, 20 и 25. В Европе — преимущественно 3, 7 и 20. В Азии — 1, 3, 7 и 40.
Какие российские операторы предоставляют своим абонентам интернет по технологии LTE
Большинство крупных операторов сотовой связи уже частично внедрили стандарт LTE. Среди них:
- Yota первыми в России запустили LTE-сеть из 63 базовых станций. Запуск состоялся в Новосибирске в 2011 году;
- Megafon запустили LTE в следующем году, охватив Новосибирск и Москву. Впоследствии оператор быстро распространил новый стандарт связи на большинство крупных городов;
- MTS установили свои LTE-станции в 83 регионах;
- Tele2;
- Beeline;
- «Вайнах Телеком» (Чеченская республика);
- «Таттелеком» (Татарстан);
- «Мотив» (ХМАО и ЯНАО);
- Win-mobile (Крым);
- «Волна-мобайл» (Крым).
Таблица: частотные диапазоны российских операторов связи
По какому принципу частоты распределяются между операторами
В РФ гражданскими организациями, к которым относятся операторы связи, занято всего 3–4% частотных диапазонов. Остальные распределены между военными и общественными нуждами.
В России распределением радиочастот занимается организация ГКРЧ (государственная комиссия по радиочастотам). Оператор связи должен подать заявление на использование интересующего его частотного диапазона. Что интересно, в открытом доступе нет точных данных об используемых частотах. Заявитель получит информацию о том, свободен диапазон или нет, только после рассмотрения заявки (которая, кстати, платная).
Заявление рассматривают сотрудники ГКРЧ, силовые структуры и Роскомнадзор. Каждый из них может отказать в предоставлении частот (силовики могут даже не назвать причину, сославшись на секретность данных).
Если на один и тот же ресурс претендуют сразу несколько операторов, то ГКРЧ объявляют конкурс. Баллы начисляются за использование технологий и наличие подходящего оборудования. Кто больше набрал — тот и получил право купить частоту.
Как узнать частоту 3G, 4G на своём смартфоне
Чтобы узнать частоту или диапазон, в котором работает ваш мобильный интернет:
- Отключитесь от Wi-Fi и включите мобильную передачу данных (Cellular).
- Значок в верхней части экрана рядом с названием вашего оператора связи укажет, подключены вы к 3G, LTE или 4G.
- Откройте набор номера и введите код. Для Android — *#0011#, *#*#4636#*#* или *#*#197328640#*#*, в зависимости от версии. Для iPhone — *3001#12345#*.
- Открывшееся меню сильно различается у разных моделей смартфонов. Вам нужно найти в меню Freq Band или Frequency (если вы подключены к 4G) или WCDMA (если у вас 3G-связь). В этом поле будет указано, к какой частоте вы подключены.
В этом меню можно увидеть состояние беспроводной сети
Разобравшись в плюсах и минусах разных частот, можно выбрать оператора, чьё покрытие будет вам подходить больше всего. Так вы сможете улучшить качество и скорость мобильного интернета.
Стандарты сотовой связи
Содержание:
Стандарты сотовой связи – общепринятые обозначения различных технологий, которые используются в сфере предоставления услуг мобильной связи. Некоторые стандарты из-за схожести их реализации и характеристик объединяют в группы, которые называются поколениями сотовой связи (англ. “generation” – “поколение”). Отсюда понятия 1G, 2G, 3G, 4G, то есть, первое поколение, второе поколение и т.д.
Из статьи ниже Вы узнаете об истории развития мобильных стандартов и поймёте чем отличаются между собой различные поколения и технологии обеспечения сотовой связи.
Что такое 2G, 3G и 4G
Узнайте, какие поколения мобильной связи сегодня существуют, а также чем они отличаются между собой.
Наверняка сегодня уже практически не осталось людей, которые бы не пользовались сотовой связью. Практически у всех есть мобильные телефоны, которые, помимо средства общения, могут выступать в роли полноценных устройств для выполнения различных прикладных задач. В частности, популярной сферой применения является Интернет-сёрфинг.
И вот здесь начинается самое интересное. Если с голосовой связью дела везде обстоят практически одинаково, то в плане доступа ко Всемирной Сети всё не так просто. Здесь обычно всплывают громкие рекламные лозунги, рекламирующие какой-то 3G, высокоскоростной доступ и пакеты гигабайт. Попробуем с Вами разобраться во всех этих нюансах.
Немного истории
Использовать радиоволны для голосовой связи начали ещё в 30-х годах ХХ века. Первые прототипы беспроводных раций разрабатывала на базе своих радиоприёмников американская компания Motorola. Готовые к эксплуатации образцы довольно громоздких раций появились вначале у военных, а чуть позже и в патрульных автомобилях у полицейских. Эти приёмо-передатчики могли работать на расстоянии в несколько километров от базовой станции и их фактически можно считать прообразом современных сотовых сетей.
Теоретическую базу для обмена маломощными радиосигналами в рамках сот с антенной в их центре разработали ещё в конце 50-х годов. Однако, технически реализовать описанную схему получилось лишь спустя 10 лет, когда стало возможно осуществлять связь между соседними сотами. В начале 70-х годов всё та же компания Motorola разработала первый мобильный телефон, а со временем совместно с AT&T организовала первую сотовую сеть на территории США:
К концу 70-х – началу 80-х годов собственные сотовые сети появились в Японии и на севере Европы (Норвегия, Дания, Швеция и Финляндия). Все они были сетями первого поколения, которое отличалось использованием только аналоговой частотной модуляции для приёма и передачи сигнала в диапазоне частот от 170 до 900 МГц (мегагерц).
Сети стандарта 1G отличались низкой пропускной способностью (около 2 кбит/с) и не самым оптимальным распределением частотных каналов. Поэтому передовые в техническом плане государства уже в середине 80-х стали разрабатывать базу для перехода к цифровой мобильной связи второго поколения. Хотя, в некоторых странах аналоговая мобильная связь существует и поныне наряду с новыми сетями. Ярким примером можно считать скандинавскую систему NMT-450 (Nordic Mobile Telephone), использующую диапазон 450 МГц, которая работает ещё с конца 70-х!
Настоящий расцвет мобильная сотовая связь переживает с переходом от аналоговых технологий к цифровым. Это позволило более оптимально использовать выделенные каналы связи, а также значительно повысить скорость и качество передачи данных. В сетях 2G средняя скорость обмена информацией повысилась до 10 – 15 кбит/с. Это позволило реализовать помимо прямой голосовой связи ещё и передачу коротких текстовых сообщений (SMS).
Переход от 1G к 2G начался в 90-х годах уже прошлого века и был сопряжён с рядом трудностей. Дело в том, что к тому времени у уже существовавших аналоговых сетей первого поколения было довольно много пользователей. Поэтому пришлось переделывать всю систему так, чтобы существовала поддержка и аналоговых, и цифровых режимов работы одновременно.
Подобный цифро-аналоговый стандарт был внедрён в 92-м году в США как надстройка над существовавшим стандартом AMPS, получив название D-AMPS (Digital Advanced Mobile Phone Service – цифровая усовершенствованная служба мобильной связи). Работал он в диапазоне частот 400 – 890 МГц и развивался вплоть до 1996 года. С тех пор стандарт постепенно вытесняется из употребления другими более продвинутыми реализациями полностью цифровых сетей.
В Европе, в отличие от Америки, если не считать скандинавского NMT, в каждой из стран существовало множество разрозненных аналоговых стандартов, работавших в различных диапазонах. Связать их воедино было технически невозможно, поэтому здесь пошли другим путём и в 1991 году создали изначально общий цифровой стандарт, который получил название GSM (Global System for Mobile Communications – глобальный стандарт мобильной связи):
Основными нововведениями GSM (если не считать того, что это был изначально цифровой стандарт) стала поддержка SIM-карт (ранее в других системах номер телефона и зависимость от оператора задавались на уровне прошивки) и роуминга (возможности подключаться к сетям других операторов того же стандарта вещания). Изначально GSM использовал частоту 900 МГц (точнее, диапазон 890 – 960 МГц), однако, со временем включил в себя частоты 1800 МГц (1710 – 1880 МГц), а также 850 МГц (824 – 894 МГц) и 1900 МГц (1850 – 1990 МГц) (американо-канадский стандарт).
Фактически большинство современных мобильных сетей на постсоветском пространстве и в Европе работает на базе стандарта GSM с различными улучшениями и обновлениями. Такие улучшения в большей степени касаются не столько улучшения качества голосовой связи, сколько развития возможности передачи данных через виртуальный канал мобильной связи.
Вплоть до начала 2000-х нормального доступа к Интернету в GSM не было. Была реализована некая адаптация веб-сайтов Всемирной сети по технологии WAP. Однако, даже с учётом адаптации, скорость доступа к WAP-сайтам была на уровне старого Dial-Up. И вот, аккурат к началу нового тысячелетия, появляется технология GPRS (General Packet Radio Service – пакетная радиосвязь общего пользования), которая позволила реализовать пакетную передачу данных.
До внедрения этой технологии базовые станции мобильной связи соединялись лишь с наземными телефонными сетями общего пользования (сокр. ТСОП или ТфОП, англ. PSTN – Public Switched Telephone Network). Теперь же появилась возможность подключаться ещё и к сетям пакетной передачи данных, которые позволяли задействовать более широкий спектр частот для повышения скорости передачи данных.
Теоретическая максимальная пропускная способность GPRS составляла 50 кбит/с (на практике, обычно не выше 40), но это уже дало возможность, пусть и не очень быстро, но получать доступ к привычному Интернету, который в то время вступил в фазу активного развития. Данная технология оказалась столь значительной, что часть специалистов даже выделили для её отличия от остальных технологий 2G термин 2.5G.
Однако, с дальнейшим развитием Интернета и улучшением размеров веб-страниц стало ясно, что GPRS уже мало соответствует реалиям. Поэтому уже в 2003 году появляется его улучшенная версия под названием EDGE (Enhanced Data rates for GSM Evolution – улучшенная передача данных для эволюции GSM). Основой улучшения стал новый способ кодирования данных (8PSK), который позволил реализовать их передачу на скорости до 1Мбит/с (реально 512 кбит/с и ниже).
Как и в случае с GPRS, некоторые склонны выделять сети, в которых используется технология EDGE в сети 2.75G. Кстати, EDGE по теоретическим требованиям к скорости обмена данными (1 Мбит/с) уже подходит под характеристики сетей третьего поколения. Но из-за реальных потерь всё же недотягивает к ним по уровню стабильности.
Технологии EDGE и GPRS сегодня распространены практически повсеместно и обычно именно они используются для доступа к Интернету с мобильного телефона в зоне, где нет покрытия 3G. Опознать тип (а значит и прикинуть максимальную скорость соединения) Вы можете, взглянув на значок Интернет-подключения в области уведомлений Вашего телефона. Буква “G” будет означать GPRS со скоростью до 50 кбит/с, а “E”, соответственно, EDGE со скоростью выше 50 кбит/с:
Начало нового поколения мобильной связи положила технология CDMA (Code Division Multiple Access – множественный доступ с кодовым разделением). В отличие от GSM, где пользователю выделялся лишь ограниченный по частоте (FDMA) или времени (TDMA) канал связи, в CDMA изначально каждый абонент мог использовать всю ширину канала. Различение же одновременно передаваемых потоков данных осуществлялось внедрением специальных псевдослучайных последовательностей, которые использовались в качестве идентификаторов на уровне аппаратного обеспечения.
Фактически именно использование кодового разделения для опознания трафика конкретного абонента, а также отход от привязки к телефонными сетями общего пользования и стали определяющими чертами 3G. Новый тип сетей, как и GPRS, изначально имел прямую связь как с ТСОП, так и с Интернет-провайдером, что в сочетании с широким пропускным каналом позволило реализовать доступ ко Всемирной Сети на скоростях выше 1 Мбит/с.
Изначально сети CDMA стали появляться с 1995 года в США в качестве альтернативы уже устаревшего стандарта D-AMPS. Однако, реальный их бум начался с появлением реализации CDMA2000, работавшей на частоте 1250 МГц с максимальной скоростью приёма до 4.9 Мбит/с и отдачи до 1.8 Мбит/с.
Примерно в это же время появился и альтернативный стандарт WCDMA (Wideband Code Division Multiple Access – широкополосный множественный доступ с кодовым разделением), покрывавший частоты в диапазоне 1900 – 2100 МГц и дающий скорость передачи данных до 2 Мбит/с. Его плюс был в том, что реализовать его поддержку можно было на базе имеющегося GSM-оборудования. Поэтому именно с WCDMA в Европе началась поддержка этой технологии, а также переход на 3G.
Как выбрать усилитель сигнала сотовой связи 2G/GSM и 3G/4G-интернета для дачи
В этой статье простым и доступным языком объясняется, что такое усилитель сигнала сотовой связи, какие виды усилителей бывают, в чем их отличие и дать несколько советов по выбору и установке данных устройств. Больше примеров фотографий произведенных работ можно найти в Instagram-аккаунте @mobilebooster.ru.
Существует два основных типа усилителей сотовой связи:
- роутер (модем) + внешняя антенна;
- репитер с комплектом антенн.
Антенна наружная с роутером внутри помещения
Данный вариант прекрасно усиливает интернет 3G/4G, но не усиливает обычную голосовую связь. Голосовой связью можно будет пользоваться посредством таких приложений, как WhatsApp, Skype и других.
Схема подключения простая: антенна на улице (в идеале – на крыше), а сам роутер находится внутри помещения, где раздает интернет-сигнал через сеть Wi-Fi.
Некоторые важные моменты при выборе антенны
Рассмотрим ключевые моменты при выборе антенны, так как от этого зависит конечная скорость интернета. То есть если правильно выбрать и поставить антенну, скорость можно получить раза в 3-4 быстрее. И это не преувеличение! Итак…
Антенна с роутером или модемом внутри. Есть популярный вариант антенн, у которых модем или сам роутер спрятан внутри устройства. А в помещение уже заходит не тугой коаксиальный кабель, а мягкая витая пара.
Их брать категорически нельзя, потому что модем и роутер, предназначенные для помещения, работают при температурах от 0 до +40 градусов по паспорту! При этом зимой роутер может себя обогреть в замкнутом пространстве, если не придется делать холодный запуск при -20 градусах, при котором часто происходит поломка. А летом на солнце внутри корпуса антенны температура может достигать до +80 градусов. Такие решения в большинстве случаев живут не более полутора лет. Будьте аккуратны: продавцы подобных антенн постоянно убеждают, что все будет отлично работать. При этом такие устройства они собирают практически на месте в торговом павильоне.
Не гонитесь за антеннами с высоким коэффициентом усиления (КУ). Во-первых, на практике их не существует более 17 дБ, даже если она больших размеров и в бумажке к ней (в паспорте) написано 27 дБ! На практике получалось максимум 16-18 дБ. Это практически предел в сегменте стоимостью до 10 тыс. рублей. Во-вторых, чем выше (КУ), тем у́же диаграмма направленности и тем сложнее точно направить антенну на базовую станцию сотового оператора.
Пример диаграммы направленности антенны с КУ=16 дБ:
То есть максимальный КУ по паспорту достигается только при точном направлении антенны в сторону базовой станции сотового оператора. Как видно из диаграммы, при отклонении приблизительно в 25 градусов реальный КУ будет всего 2 дБ (выделено красным)! А для антенн с более высоким КУ отклонение в 2-3 градуса имеет колоссальное уменьшение реального усиления сигнала!
Еще один важный момент: на практике, если нет прямой видимости базовой станции сотового оператора (соседние строения, лес, ландшафт местности), то антенна с более широкой диаграммой направленности (более низким КУ) лучше ловит интернет-сигнал. Это заметно не по уровню сигнала, а по скорости интернета! Связано это с параметрами RSRQ и SINR.
Поколения мобильной связи 1G, 2G, 3G, 4G, 5G
Мысль о создании беспроводной мобильной связи зародилась еще в начале прошлого столетия. С тех пор, работы в этом направлении велись по большей части западными странами и Советским Союзом. Рабочий прототип сотового телефона появился только лишь в 1973 году, когда компанией Motorola был представлен миру официально первый мобильный телефон DynaTac. В том же году, 3 апреля, директор отдела мобильной связи компании Motorola Мартин Купер, прогуливаясь по Манхеттену, демонстративно позвонил по мобильному телефону, чем привел в восторг прохожих.
Сегодня, жизнь человека трудно представить без мобильного телефона. Телефония, интернет со всеми его сервисами и возможностями – то без чего теперь невозможно обойтись ни дня. А ведь появилось все это не так уж давно, хотя за последние 35 лет сменилось уже четыре поколения сотовой связи. Развитие в этой области идет так быстро, что, едва исчерпав возможности 4G, операторы вот-вот предложат новое – пятое поколения мобильной связи.
В этой статье мы расскажем о том, как развивалась сотовая связь из поколения в поколение, и какие технологии применялись на каждом из этапов.
1G – первое поколение
Стандарты связи первого поколения были аналоговыми и имели множество недостатков. Все тогдашние технологии, мало того, что имели проблемы были с качеством сигнала, так еще и были несовместимы между собой.
Наибольшее распространение получили следующие стандарты:
- AMPS (Advanced Mobile Phone Service – усовершенствованная подвижная телефонная служба). Данный стандарт широко использовался в странах Северной и Южной Америки, а также в Австралии;
- TACS (Total Access Communications System — тотальная система доступа к связи). Этот стандарт получил распространение во многих Европейских странах;
- NMT (Nordic Mobile Telephone – северный мобильный телефон). Использовался в скандинавских странах.
- TZ-801 (TZ-802, TZ-803). Использовался в Японии.
Несмотря на все недостатки, аналоговым сетям мобильной связи все же нашли коммерческое применение. Первопроходцами в этом, ожидаемо, стали японцы, которые запустили в массы аналоговую беспроводную телефонную сеть в 1979 году. Затем, в 1981 году, сеть была запущена в некоторых европейских странах — Дании, Швеции, Норвегии и Финляндии. В США, первая коммерческая беспроводная телефонная сеть была пущена в эксплуатацию лишь в 1983 году.
2G – второе поколение
Начиная с 1982 года, изучением и разработкой пан-Европейской наземной системы подвижной связи общего применения занималась рабочая группа GSM (от франц. Groupe Spécial Mobile — специальная группа по подвижной связи), которая была сформирована Европейской конференцией почтовых и телекоммуникационных ведомств. Затем, в 1989 году, изучение и разработку второго поколения мобильной связи продолжил Европейский институт стандартов в телекоммуникации. Но аббревиатура GSM осталась, хотя и приобрела новое значение — Global System for Mobile Communications (глобальная система для подвижной связи).
Внедрение коммерческих проектов на основе технологий второго поколения началось в 1991 году. Отличало второе поколение от первого в первую очередь применение цифровых методов передачи данных, что открыло возможности для создание таких сервисов, как SMS (Short Message Service — служба коротких сообщений), WAP (Wireless Application Protocol — беспроводной протокол передачи данных), с помощью которого стал возможен доступ к Интернет с мобильных устройств. Но скорость передачи данных в сетях 2G, конечно же, пока оставляла желать лучшего, так как позволяла загружать не более 19 Кбит интернет-трафика в секунду. Тем не менее, пользователи очень высоко оценили ноу-хау, и стимулов для дальнейшего развития технологий передачи данных посредством мобильных сетей было более чем достаточно.
Стоит отметить, что на пути к третьему поколению, были предприняты некоторые значительные шаги в развитии, которые, получили условные обозначения 2,5G и 2,7G.
Промежуточное поколение 2,5G ознаменовал приход технологии GPRS (General Packet Radio Service — пакетная радиосвязь общего пользования), которая позволила увеличить скорость передачи данных с 19 до аж 172 кбит/с. Но это лишь в теории, на практике скорость едва ли достигала 80 кбит/с, что по сравнению с 2G тоже не так уж плохо.
Другое яркое событие – появление технологии EDGE (EGPRS) (Enhanced Data rates for GSM Evolution). Этим событием был обозначен следующий промежуточный этап, получивший название 2,7G. Промежуточный, а не следующий, так как технология предполагала лишь усовершенствование прежней, а не создание чего-то принципиально нового. Что касается скорости передачи данных в таких сетях, то теоретический максимум составлял около 470 Кбит/с, практические показатели варьировались в районе 150 Кбит/с.
3G – третье поколение
В то время, как продолжалось коммерческое внедрение и усовершенствование технологий второго поколения, активно велись работы по созданию нового — третьего поколения. И вот, в начале 2000-х годов, наконец была запущена в эксплуатацию сеть 3G (в России в 2002 году). Основой послужила технология CDMA (Code Division Multiple Access — множественный доступ с кодовым разделением).
Третье поколение включает в себя целых 5 стандартов:
- UMTS/WCDMA
- CDMA2000/IMT-MC
- TD-CDMA/TD-SCDMA
- DECT
- UWC-136
Первые два получили самое широкое применение в мире. Рассмотрим стандарты, используемые в России.
- UMTS (Universal Mobile Telecommunications System – универсальная сисема мобильной электросвязи) – технология, разработанная на основе WCDMA с целью внедрения 3G в Европейских странах. Успешно прижилась так же и в нашей стране. Работает в частотном диапазоне 2110-2200 МГц. Максимальная скорость передачи данных в режиме UMTS составляет около 2 Мбит/с, при условии, что принимающее устройство неподвижно. При движении абонента значительно падает, и в зависимости от скорости движения, может снизиться до 144 Кбит/с.
- HSDPA (High-Speed Downlink Packet Access— высокоскоростная пакетная передача данных от базовой станции к мобильному телефону) – самый первый из семейства протоколов сотовой связи HSPA (High Speed Packet Access — высокоскоростная пакетная передача данных). Основанный на UMTS технологии, он и последующие его версии, позволили значительно увеличить скорость передачи данных в сетях 3G. В первой реализации протокол HSDPA имел максимальную скорость передачи данных 1,2 Мбит/с. Скорость передачи данных в последующей версии протокола HSDPA составляла уже 3,6 Мбит/с. Дальнейшее развитие протокола HSDPA позволило увеличить скорость сначала до 7,2 Мбит/с, а затем, и до 14,4 Мбит/с.
- HSPA+ – технология, базирующаяся в свою очередь на HSDPA, реализует более сложные методы модуляции сигнала (16QAM, 64QAM). HSPA+ в двухканальном режиме (DC-HSPA+) позволяет достигать скорости передачи данных до 42,2 Мбит/с.
4G – четвертое поколение
Сегодня, в мобильных сетях широко применяется технология уже четвертого поколения, причем не только в больших городах, но и в городах поменьше и даже деревнях. Переход к 4G был ознаменован внедрением новых стандартов передачи данных в беспроводных сетях, которые были разработаны совместными усилиями компаний Hewlett-Packard и NTT DoCoMo. Речь идет о стандартах WiMax и LTE. Далее подробнее о каждом из них.
WiMAX. Данный стандарт был разработан еще в 2001 году организацией WiMAX Forum. В состав данной организации входили такие производители, как Huawei Technologies, Samsung, Intel и многие другие известные компании. По сути технология WiMAX является продолжением всем знакомого стандарта беспроводной связи для локальных сетей Wi-Fi. Коммерческое применение для этой технологии впервые нашлось в Канаде в 2005 году.
LTE (Long-Term Evolution— долговременное развитие) концептуально является продолжением развития стандартов предыдущих поколений — GSM/UMTS и изначально к четвёртому поколению не относился, но на сегодняшний день именно этот стандарт является основным для сетей четвертого поколения. Разработанный крупнейшим в Японии оператором сотовой связи NTT DoCoMo, в десятом его релизе (LTE Advanced), данный стандарт был принят Международным союзом электросвязи как стандарт четвертого поколения, так как отвечал всем предъявляемым требованиям. Первый запуск коммерческой сети с поддержкой LTE был осуществлен в 2009 году в Швеции и Норвегии.
Максимально возможная скорость передачи данных по стандарту LTE составляет 326.4 Мбит/с, но это в теории. Что касается практики, то скорость передачи данных будет существенно зависеть от ширины диапазона частот, используемой оператором. Из российских операторов сотовой связи, на сегодняшний день, наибольшую ширину диапазона частот для сетей беспроводной связи, которая составляет 40 МГц, использует только Мегафон. Остальные компании, предоставляющие услуги сотовой связи, используют ширину канала 10 МГц.
Для сравнения, максимум скорости передачи данных в LTE-сетях в диапазоне частот 10 МГЦ составляет 75 Мбит/с, а предельная скорость в диапазоне 40 МГц может достигать 300 Мбит/с.
Есть еще такое понятие, как частотная полоса. Спецификации на такие частотные полосы называются бэндами (band). Всего таких спецификаций 70 и в разных странах для сетей LTE применяются разные спецификации. В России используются следующие 5:
- band3 FDD LTE в частотном диапазоне 1800 МГц;
- band7 FDD LTE в частотном диапазоне 2600 МГц;
- band20 FDD LTE в частотном диапазоне 800 МГц;
- band31 FDD LTE в частотном диапазоне 450 МГц;
- band38 TDD LTE в частотном диапазоне 2600 МГц.
В сетях LTE FDD (Frequency Division Duplex) используется метод частотного разделения, это означает, что загрузка и передача трафика осуществляется в разных частотных диапазонах. А в сетях LTE TDD (Time Division Duplex) используется метод разделения по времени, то есть входящий и исходящий трафик передаются в одном диапазоне частот, но в разные промежутки времени.
5G – пятое поколение
Работы по разработке стандартов для сетей беспроводной передачи данных пятого поколения, на момент написания статьи, еще ведутся. Основным спонсором исследований в этом направлении является один из крупнейших игроков на рынке сетевого оборудования — китайская компании Huawei Technologies. Начало работ по внедрению 5G прогнозируется в 2020 году. В опытных испытаниях технологий пятого поколения удавалось достичь скорости передачи данных 25 Гбит/с, и это значение почти на порядок выше того, что способна дать сеть четвертого поколения.
Поддержка стандартов мобильной беспроводной связи.
Оборудование базовых станций российских сотовых операторов обеспечивает поддержку стандартов всех поколений, начиная с 2G: GSM, GPRS, EDGE, WCDMA, UMTS, HSPA, LTE, LTE-Advanced. Это дает возможность получать доступ к сети Интернет с мобильных устройств как новых, так и предыдущих поколений. Обычно, устройства для доступа к беспроводной сети интернет, будь то телефон, usb-модем или роутер с поддержкой сим-карт, при подключении выбирают ту сеть, которая обеспечивает максимальный уровень сигнала. Но, на большинстве из них в настройках можно вручную установить ту сеть, к которой следует подключаться. Такая мера может быть оправдана в тех случаях, когда несмотря на высокий уровень сигнала LTE, наблюдается низкая скорость соединения, обусловленная высокой загруженностью оборудования базовой станции, и переключение на режим UMTS в некоторых случаях может помочь увеличить скорость передачи данных.
Усиление мобильной связи и интернета. Часть 1 – Измерение сигнала
В данной статье мы рассмотрим основные параметры сотовой связи. Научимся самостоятельно определять диапазон частот выбранного оператора и стандарт связи, в котором он работает.
Например, в городе 4G интернет обычно предоставляется на частоте 2600 МГц и подавляющее большинство комплектов «для усиления 4G Интернета» рассчитаны именно на эту частоту. А в местности, где расположен ваш загородный дом, оператор может предоставлять 4G интернет на частоте 800 или 1800 МГц. Соответственно, в вашем загородном доме, комплект, предназначенный для работы на частоте 2600 МГц, будет бесполезен.
Чтобы избежать неоправданных трат и разочарования, перед приобретением систем усиления сотовой связи и мобильного интернета, необходимо выяснить поколение мобильной сети (2G, 3G или 4G), которую вы хотите усилить и диапазон частот, в котором работает сеть.
Частоты операторов сотовой связи в России
В России, для сотовых операторов выделено 5 частотных диапазонов (800 МГц, 900 МГц, 1800 МГц, 2100 МГц и 2600 МГц). В одном частотном диапазоне могут использоваться несколько поколений и стандартов связи. В таблице 1 приведены частотные диапазоны и стандарты сотовой связи, применяющиеся в России.
Таблица 1 – Частотные диапазоны и стандарты сотовой связи применяющиеся в России
Из таблицы 1 следует, что каждое поколение сети может иметь несколько надстроек и подстандартов, а в одном частотном диапазоне могут применяться несколько стандартов и поколений сотовой связи.
Поколения и технологии сотовой связи
Сначала определим поколение сотовой сети, которую мы хотим усилить. Это очень легко сделать с помощью смартфона. В большинстве современных смартфонов, технология передачи данных указывается рядом с уровнем мобильного сигнала оператора.
Поколение сотовой может быть указано непосредственно (4G, 3G или 2G) или с помощью общепринятой аббревиатуры, например:
- 4G, LTE (L) — четвертое поколение сотовой связи, в данный момент используемое российскими операторами только для высокоскоростного мобильного доступа к сети Интернет. Голосовая связь в стандарте 4G в России ещё не поддерживается;
- 3G, UMTS, HSDPA (H), HSPA+ (H+) — третье поколение сотовой связи, объединяющее в себе технологию радиосвязи и высокоскоростной мобильный доступ к сети Интернет;
- 2G, GPRS (G), EDGE (E) — устаревшая технология 2G реализованная в далёком 1991 году, на которой работает стандартная голосовая GSM-связь и очень медленный мобильный интернет.
Определяем диапазон и частоту сигнала
Определить частоту сигнала можно самостоятельно с помощью смартфона. Замеры нужно производить в различных типах подключения (4G, 3G, 2G). Чтобы измерить нужный стандарт, принудительно переведите смартфон в соответствующий режим сети. Для этого установите в настройках вашего смартфона интересующий вас режим сети.
Современные смартфоны устроены таким образом, что всегда стремятся подключиться к наиболее современной и высокоскоростной сети. Например, при наличии слабого сигнала 4G, смартфон всё равно будет поддерживать связь с базовой станцией оператора в этом стандарте. В момент совершения вызова, смартфон автоматически переключится на доступные ему стандарты 3G или 2G, так как голосовая связь в стандарте 4G, как было сказано выше, в России не поддерживается.
Переведите смартфон в нужный стандарт связи. Смартфон не сразу переключается в нужный режим. Переключившись, необходимо подождать 1-2 минуты, прежде чем приступать к замерам. Если вы не знаете, какой из присутствующих операторов подходит для решения ваших задач, произведите замеры с использованием SIM-карт разных операторов.
Внимание! Перед тем, как определять частоту, отключите Wi-Fi сеть. В случае если в вашем смартфоне установлено две SIM-карты, рекомендуем извлечь или отключить ненужную карту и оставить только ту, которую необходимо протестировать. Так вы будете избавлены от ошибок и получите точную информацию о текущем соединении.
Замеры параметров сети можно произвести через скрытое сервисное меню смартфона или установив одно из приложений для проведения мобильного мониторинга и измерения сигнала. Например «Сотовые вышки. Локатор», «Network Cell Info», «iWScan» и другие подобные приложения.
Сервисное меню смартфона открывается с помощью специальных кодов. В зависимости от версии ОС Android коды, открывающие скрытое сервисное меню различаются. На одних смартфонах вы сразу перейдёте на экран с информацией о состоянии сети, на других устройствах может потребоваться перейти в другие подразделы сервисного меню.
На некоторых моделях смартфонов под управлением ОС Android сервисное меню может быть недоступно. Воспользуйтесь специальными приложениями для проведения замеров сети.
Рисунок 1 – Использование сервисного меню смартфона и приложений “Network Cell Info” и “Сотовые вышки. Локатор” для определения параметров сети
Данные, полученные в результате измерения сигнала сети, нужно сопоставить с таблицей 2 размещённой ниже.
Поколения мобильной связи 1G, 2G, 3G, 4G, 5G
Мысль о создании беспроводной мобильной связи зародилась еще в начале прошлого столетия. С тех пор, работы в этом направлении велись по большей части западными странами и Советским Союзом. Рабочий прототип сотового телефона появился только лишь в 1973 году, когда компанией Motorola был представлен миру официально первый мобильный телефон DynaTac. В том же году, 3 апреля, директор отдела мобильной связи компании Motorola Мартин Купер, прогуливаясь по Манхеттену, демонстративно позвонил по мобильному телефону, чем привел в восторг прохожих.
Сегодня, жизнь человека трудно представить без мобильного телефона. Телефония, интернет со всеми его сервисами и возможностями – то без чего теперь невозможно обойтись ни дня. А ведь появилось все это не так уж давно, хотя за последние 35 лет сменилось уже четыре поколения сотовой связи. Развитие в этой области идет так быстро, что, едва исчерпав возможности 4G, операторы вот-вот предложат новое – пятое поколения мобильной связи.
В этой статье мы расскажем о том, как развивалась сотовая связь из поколения в поколение, и какие технологии применялись на каждом из этапов.
1G – первое поколение
Стандарты связи первого поколения были аналоговыми и имели множество недостатков. Все тогдашние технологии, мало того, что имели проблемы были с качеством сигнала, так еще и были несовместимы между собой.
Наибольшее распространение получили следующие стандарты:
- AMPS (Advanced Mobile Phone Service – усовершенствованная подвижная телефонная служба). Данный стандарт широко использовался в странах Северной и Южной Америки, а также в Австралии;
- TACS (Total Access Communications System — тотальная система доступа к связи). Этот стандарт получил распространение во многих Европейских странах;
- NMT (Nordic Mobile Telephone – северный мобильный телефон). Использовался в скандинавских странах.
- TZ-801 (TZ-802, TZ-803). Использовался в Японии.
Несмотря на все недостатки, аналоговым сетям мобильной связи все же нашли коммерческое применение. Первопроходцами в этом, ожидаемо, стали японцы, которые запустили в массы аналоговую беспроводную телефонную сеть в 1979 году. Затем, в 1981 году, сеть была запущена в некоторых европейских странах — Дании, Швеции, Норвегии и Финляндии. В США, первая коммерческая беспроводная телефонная сеть была пущена в эксплуатацию лишь в 1983 году.
2G – второе поколение
Начиная с 1982 года, изучением и разработкой пан-Европейской наземной системы подвижной связи общего применения занималась рабочая группа GSM (от франц. Groupe Spécial Mobile — специальная группа по подвижной связи), которая была сформирована Европейской конференцией почтовых и телекоммуникационных ведомств. Затем, в 1989 году, изучение и разработку второго поколения мобильной связи продолжил Европейский институт стандартов в телекоммуникации. Но аббревиатура GSM осталась, хотя и приобрела новое значение — Global System for Mobile Communications (глобальная система для подвижной связи).
Внедрение коммерческих проектов на основе технологий второго поколения началось в 1991 году. Отличало второе поколение от первого в первую очередь применение цифровых методов передачи данных, что открыло возможности для создание таких сервисов, как SMS (Short Message Service — служба коротких сообщений), WAP (Wireless Application Protocol — беспроводной протокол передачи данных), с помощью которого стал возможен доступ к Интернет с мобильных устройств. Но скорость передачи данных в сетях 2G, конечно же, пока оставляла желать лучшего, так как позволяла загружать не более 19 Кбит интернет-трафика в секунду. Тем не менее, пользователи очень высоко оценили ноу-хау, и стимулов для дальнейшего развития технологий передачи данных посредством мобильных сетей было более чем достаточно.
Стоит отметить, что на пути к третьему поколению, были предприняты некоторые значительные шаги в развитии, которые, получили условные обозначения 2,5G и 2,7G.
Промежуточное поколение 2,5G ознаменовал приход технологии GPRS (General Packet Radio Service — пакетная радиосвязь общего пользования), которая позволила увеличить скорость передачи данных с 19 до аж 172 кбит/с. Но это лишь в теории, на практике скорость едва ли достигала 80 кбит/с, что по сравнению с 2G тоже не так уж плохо.
Другое яркое событие – появление технологии EDGE (EGPRS) (Enhanced Data rates for GSM Evolution). Этим событием был обозначен следующий промежуточный этап, получивший название 2,7G. Промежуточный, а не следующий, так как технология предполагала лишь усовершенствование прежней, а не создание чего-то принципиально нового. Что касается скорости передачи данных в таких сетях, то теоретический максимум составлял около 470 Кбит/с, практические показатели варьировались в районе 150 Кбит/с.
3G – третье поколение
В то время, как продолжалось коммерческое внедрение и усовершенствование технологий второго поколения, активно велись работы по созданию нового — третьего поколения. И вот, в начале 2000-х годов, наконец была запущена в эксплуатацию сеть 3G (в России в 2002 году). Основой послужила технология CDMA (Code Division Multiple Access — множественный доступ с кодовым разделением).
Третье поколение включает в себя целых 5 стандартов:
- UMTS/WCDMA
- CDMA2000/IMT-MC
- TD-CDMA/TD-SCDMA
- DECT
- UWC-136
Первые два получили самое широкое применение в мире. Рассмотрим стандарты, используемые в России.
- UMTS (Universal Mobile Telecommunications System – универсальная сисема мобильной электросвязи) – технология, разработанная на основе WCDMA с целью внедрения 3G в Европейских странах. Успешно прижилась так же и в нашей стране. Работает в частотном диапазоне 2110-2200 МГц. Максимальная скорость передачи данных в режиме UMTS составляет около 2 Мбит/с, при условии, что принимающее устройство неподвижно. При движении абонента значительно падает, и в зависимости от скорости движения, может снизиться до 144 Кбит/с.
- HSDPA (High-Speed Downlink Packet Access— высокоскоростная пакетная передача данных от базовой станции к мобильному телефону) – самый первый из семейства протоколов сотовой связи HSPA (High Speed Packet Access — высокоскоростная пакетная передача данных). Основанный на UMTS технологии, он и последующие его версии, позволили значительно увеличить скорость передачи данных в сетях 3G. В первой реализации протокол HSDPA имел максимальную скорость передачи данных 1,2 Мбит/с. Скорость передачи данных в последующей версии протокола HSDPA составляла уже 3,6 Мбит/с. Дальнейшее развитие протокола HSDPA позволило увеличить скорость сначала до 7,2 Мбит/с, а затем, и до 14,4 Мбит/с.
- HSPA+ – технология, базирующаяся в свою очередь на HSDPA, реализует более сложные методы модуляции сигнала (16QAM, 64QAM). HSPA+ в двухканальном режиме (DC-HSPA+) позволяет достигать скорости передачи данных до 42,2 Мбит/с.
4G – четвертое поколение
Сегодня, в мобильных сетях широко применяется технология уже четвертого поколения, причем не только в больших городах, но и в городах поменьше и даже деревнях. Переход к 4G был ознаменован внедрением новых стандартов передачи данных в беспроводных сетях, которые были разработаны совместными усилиями компаний Hewlett-Packard и NTT DoCoMo. Речь идет о стандартах WiMax и LTE. Далее подробнее о каждом из них.
WiMAX. Данный стандарт был разработан еще в 2001 году организацией WiMAX Forum. В состав данной организации входили такие производители, как Huawei Technologies, Samsung, Intel и многие другие известные компании. По сути технология WiMAX является продолжением всем знакомого стандарта беспроводной связи для локальных сетей Wi-Fi. Коммерческое применение для этой технологии впервые нашлось в Канаде в 2005 году.
LTE (Long-Term Evolution— долговременное развитие) концептуально является продолжением развития стандартов предыдущих поколений — GSM/UMTS и изначально к четвёртому поколению не относился, но на сегодняшний день именно этот стандарт является основным для сетей четвертого поколения. Разработанный крупнейшим в Японии оператором сотовой связи NTT DoCoMo, в десятом его релизе (LTE Advanced), данный стандарт был принят Международным союзом электросвязи как стандарт четвертого поколения, так как отвечал всем предъявляемым требованиям. Первый запуск коммерческой сети с поддержкой LTE был осуществлен в 2009 году в Швеции и Норвегии.
Максимально возможная скорость передачи данных по стандарту LTE составляет 326.4 Мбит/с, но это в теории. Что касается практики, то скорость передачи данных будет существенно зависеть от ширины диапазона частот, используемой оператором. Из российских операторов сотовой связи, на сегодняшний день, наибольшую ширину диапазона частот для сетей беспроводной связи, которая составляет 40 МГц, использует только Мегафон. Остальные компании, предоставляющие услуги сотовой связи, используют ширину канала 10 МГц.
Для сравнения, максимум скорости передачи данных в LTE-сетях в диапазоне частот 10 МГЦ составляет 75 Мбит/с, а предельная скорость в диапазоне 40 МГц может достигать 300 Мбит/с.
Есть еще такое понятие, как частотная полоса. Спецификации на такие частотные полосы называются бэндами (band). Всего таких спецификаций 70 и в разных странах для сетей LTE применяются разные спецификации. В России используются следующие 5:
- band3 FDD LTE в частотном диапазоне 1800 МГц;
- band7 FDD LTE в частотном диапазоне 2600 МГц;
- band20 FDD LTE в частотном диапазоне 800 МГц;
- band31 FDD LTE в частотном диапазоне 450 МГц;
- band38 TDD LTE в частотном диапазоне 2600 МГц.
В сетях LTE FDD (Frequency Division Duplex) используется метод частотного разделения, это означает, что загрузка и передача трафика осуществляется в разных частотных диапазонах. А в сетях LTE TDD (Time Division Duplex) используется метод разделения по времени, то есть входящий и исходящий трафик передаются в одном диапазоне частот, но в разные промежутки времени.
5G – пятое поколение
Работы по разработке стандартов для сетей беспроводной передачи данных пятого поколения, на момент написания статьи, еще ведутся. Основным спонсором исследований в этом направлении является один из крупнейших игроков на рынке сетевого оборудования — китайская компании Huawei Technologies. Начало работ по внедрению 5G прогнозируется в 2020 году. В опытных испытаниях технологий пятого поколения удавалось достичь скорости передачи данных 25 Гбит/с, и это значение почти на порядок выше того, что способна дать сеть четвертого поколения.
Поддержка стандартов мобильной беспроводной связи.
Оборудование базовых станций российских сотовых операторов обеспечивает поддержку стандартов всех поколений, начиная с 2G: GSM, GPRS, EDGE, WCDMA, UMTS, HSPA, LTE, LTE-Advanced. Это дает возможность получать доступ к сети Интернет с мобильных устройств как новых, так и предыдущих поколений. Обычно, устройства для доступа к беспроводной сети интернет, будь то телефон, usb-модем или роутер с поддержкой сим-карт, при подключении выбирают ту сеть, которая обеспечивает максимальный уровень сигнала. Но, на большинстве из них в настройках можно вручную установить ту сеть, к которой следует подключаться. Такая мера может быть оправдана в тех случаях, когда несмотря на высокий уровень сигнала LTE, наблюдается низкая скорость соединения, обусловленная высокой загруженностью оборудования базовой станции, и переключение на режим UMTS в некоторых случаях может помочь увеличить скорость передачи данных.